Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 276, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401227

RESUMO

BACKGROUND: In soils, phosphorous (P) mostly exists in fixed/insoluble form and unavailable for plants use in soil solution, hence it is in scarcity. P is fixed in the form of aluminium, iron and manganese phosphates in acidic soils and calcium phosphate in alkaline soils. Phosphate solubilizing bacteria, the ecological engineers play a pivotal role in the mobilization of fixed forms of P by using different mechanisms. The objectives of this study were to evaluate inorganic phosphate solubilizing efficiency and other multiple plant growth promoting traits of Erythrina brucei root nodule endophytic bacteria and to investigate effects of the selected endophytic bacteria on the growth of wheat plant under phosphorous deficient sand culture at greenhouse conditions. RESULTS: Among a total of 304 passenger endophytic bacteria, 119 (39%) exhibited tricalcium phosphate (TCP) solubilization; however, none of them were formed clear halos on solid medium supplemented with aluminum phosphate (Al-P) or iron phosphate (Fe-P). Among 119 isolates, 40% exhibited IAA production. The selected nine potential isolates also exhibited potentials of IAA, HCN, NH3 and/or hydrolytic enzymes production. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe-P and TCP) included in liquid medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L-1 and 107.48 mg L-1, respectively at sampling day3 and 120.36 mg L-1 and 112.82 mg L-1, respectively at day 6. The highest values of solubilized Al-P and Fe-P were recorded by isolate RG6, 102.14 mg L-1 and 96.07 mg L-1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61 µg mL-1 was recorded by isolate DM17 (Bacillus thuringiensis). Inoculation of wheat with AU4, RG6 and RG5 (Acinetobacter soli) increased shoot length by 11, 17.4 and 14.6%, respectively compared to the negative control. Similarly, 76.9, 69.2 and 53.8% increment in shoot dry weight is recorded by inoculation with RG6, AU4 and RG5, respectively. These nine potential endophytic isolates are identified to Gluconobacter cerinus (4), Acinetobacter soli (3), Achromobacter xylosoxidans (1) and Bacillus thuringiensis (1). CONCLUSION: AU4, RG6 and RG5 can be potential bio-inoculants candidates as low cost agricultural inputs in acidic and/or alkaline soils for sustainable crop production.


Assuntos
Erythrina , Erythrina/metabolismo , Endófitos , Fosfatos/metabolismo , Bactérias , Triticum/microbiologia , Solo , Ferro/metabolismo
2.
Biotechnol Rep (Amst) ; 33: e00707, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35145889

RESUMO

The legume-rhizobium symbiosis provides Nitrogen (N), while Legume-AMF symbiosis improves Phosphorus (P) supply to plants. This research was conducted to evaluate the symbiotic effectiveness of the Bradyrhizobium spp. and consortial inoculation of plant growth promoting bacteria -Bradyrhizobium shewense (AU27) and Acinetobacter soli (AU4), and arbuscular mycorrhizhal fungi Glomus sp.1 (AMF1) and Acaulospora sp.1 (AMF2), on growth, production and shoot N and P content of Erythrina brucei.The bacterial and mycorrhizal species were evaluated for phyto-beneficial properties in the greenhouse as individual as well as consortial inoculation.. All Bradyrhizobium species were effective for symbiotic nitrogen fixation. Consortial inoculations comprising of B. shewense (AU27) + A. soli (AU4) + Glomus sp.1 (AMF1) + Acaulospora sp.1 (AMF2) (T7) increased shoot length and shoot dry weight by 140% and 268%, respectively compared to un-inoculated control. Inoculations that involved B. shewense (AU27) + A. soli (AU4) increased shoot nitrogen by 260%, and 1200% increment of shoot P was recorded with inoculations of B. shewense (AU27) + Glomus sp.1 (AMF1) compared to un-inoculated control. These microbial inputs could be candidates for growth enhancement and shoot nitrogen and phosphorus improvement in Erythrina brucei and also as sustainable and eco-friendly agriculture input.

3.
Curr Genomics ; 21(7): 481-490, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33214764

RESUMO

Interest in the efficient production of soybean, as one of the most important crop plants, is significantly increasing worldwide. Soybean symbioses, the most important biological process affecting soybean yield and protein content, were revitalized due to the need for sustainable agricultural practices. Similar to many crop species, soybean can establish symbiotic associations with the soil bacteria rhizobia, and with the soil fungi, arbuscular mycorrhizal fungi, and other beneficial rhizospheric microorganisms are often applied as biofertilizers. Microbial interactions may importantly affect soybean production and plant health by activating different genomic pathways in soybean. Genomic research is an important tool, which may be used to elucidate and enhance the mechanisms controlling such actions and interactions. This review presents the available details on the genomic research favoring higher soybean production. Accordingly, new technologies applied to plant rhizosphere and symbiotic microbiota, root-plant endophytes, and details about the genetic composition of soybean inoculant strains are highlighted. Such details may be effectively used to enhance soybean growth and yield, under different conditions, including stress, resulting in a more sustainable production.

4.
Mycologia ; 105(3): 670-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23233507

RESUMO

Two new arbuscular mycorrhizal fungal species, (Glomeromycota) Septoglomus fuscum and S. furcatum, are described and illustrated. Spores of S. fuscum usually occur in loose hypogeous clusters, rarely singly in soil or inside roots, and S. furcatum forms only single spores in soil. Spores of S. fuscum are brownish orange to dark brown, globose to subglobose, (20-)47(-90) µm diam, rarely ovoid, 21-50 × 23-60 µm. Their spore wall consists of a semi-persistent, semi-flexible, orange white to golden yellow, rarely hyaline, outer layer, easily separating from a laminate, smooth, brownish orange to dark brown inner layer. Spores of S. furcatum are reddish brown to dark brown, globose to subglobose, (106-) 138(-167) µm diam, rarely ovoid, 108-127 × 135-160 µm, usually with one subtending hypha that is frequently branched below the spore base, or occasionally with two subtending hyphae located close together. Spore walls consists of a semipermanent, hyaline to light orange outermost layer, a semipermanent, hyaline to golden yellow middle layer, and a laminate, smooth, reddish brown to dark brown innermost layer. None of the spore-wall layers of S. fuscum and S. furcatum stain in Melzer's reagent. In the field, S. fuscum was associated with roots of Arctotheca populifolia colonizing maritime dunes located near Strand in South Africa and S. furcatum was associated with Cordia oncocalyx growing in a dry forest in the Ceará State, Brazil. In single-species cultures with Plantago lanceolata as host plant, S. fuscum and S. furcatum formed arbuscular mycorrhizae. Phylogenetic analyses of the SSU, ITS and LSU nrDNA sequences placed the two new species in genus Septoglomus and both new taxa were separated from described Septoglomus species.


Assuntos
Glomeromycota/classificação , Micorrizas/classificação , Raízes de Plantas/microbiologia , Glomeromycota/genética , Glomeromycota/ultraestrutura , Micorrizas/genética , Micorrizas/ultraestrutura , Filogenia , Microbiologia do Solo , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...